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ABSTRACT 
"Uncertainty analysis itself is uncertain, therefore, you 

cannot evaluate it exactly," Source Uncertain 

Quantitative results for aerospace engineering problems 

are influenced by many sources of uncertainty. 

Uncertainty analysis aims to make a technical 

contribution to decision-making through the 

quantification of uncertainties in the relevant variables as 

well as through the propagation of these uncertainties up 

to the result. Uncertainty can be thought of as a measure 

of the 'goodness' of a result and is typically represented as 

statistical dispersion. 

This paper will explain common measures of centrality 

and dispersion; and—with examples—will provide 

guidelines for how they may be estimated to ensure 

effective technical contributions to decision-making.  

INTRODUCTION 

When uncertainty estimates are expected to inform 

decision-makers, it is especially important to carefully 

consider, understand, and communicate the significance 

of the statistical parameters used in the characterization of 

failure probability distributions. This paper will focus on 

a few fundamental examples and the principles paramount 

in achieving successful uncertainty estimation. After 

establishing definitions and providing background 

material, we will illustrate key principles as we step 

through the quantification of uncertainty. Finally, the risk 

implications of uncertainty estimation are summarized in 

a convenient reference card: Uncertainty Estimation 

Cheat Sheet. 

1. Definitions and Background Material 

In an attempt to make later concepts accessible to a 

broader audience, this section provides a synopsis of some 

of the relevant concepts of probability theory. Here and in 

what follows, boldface indicates a word or phrase that is 

being defined or explained. 

1.1 Probability Distributions 

Informally, a probability distribution is a mathematical 

function that assigns probabilities to each element of the 

sample space (the set of all possible outcomes in an 

experiment). Probability distributions are either discrete, 

or continuous, or a mixture of both types. However, the 

topics, herein, require only some basic knowledge of 

continuous distributions. 

A random variable is a function that maps outcomes of 

an experiment to numerical quantities. For a continuous 

distribution, the probability density function (pdf) is the 

function that is used to generate the probability that a 

random variable X lies within an interval [a, b]: 

Pr[𝑎 ≤ 𝑿 ≤ 𝑏] =  ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

 

In this paper we will discuss the following continuous 

distributions:  The exponential, normal, and lognormal. 

The probability density of the exponential distribution 

is: 

𝑓(𝑡) = {𝜆𝑒−𝜆𝑡 , 𝑡 ≥ 0
0, 𝑡 < 0

 

Assuming an exponential failure model for a component’s 

mission exposure time, the probability of failure of the 

component before time T is given by the cumulative 

distribution function calculated as: 

𝐹(𝑇, 𝜆) = ∫ 𝜆𝑒−𝜆𝑡
𝑇

0

𝑑𝑡 = 1 − 𝑒−𝜆𝑇 

The exponential is a simple model with one parameter, 

and its properties are widely understood. It is commonly 

used to model components operating within their service 

life because of the following characteristics: 

1) The hazard function (instantaneous failure rate)  

is constant with respect to time and is equal to λ, 

which implies: 
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2) The memoryless property; that is, components 

do not wear out: they function as good as new 

regardless of how long they have been in service. 

The pdf of the normal (or Gaussian) distribution is: 

𝑓(𝑥) =  
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  

Where the parameters µ and σ are the mean and the 

standard deviation, respectively. The normal pdf is 

symmetric about x = µ. An example of data that follows a 

normal pdf are repeated measurements of a physical 

characteristic of a part (such as, weight, length, 

thickness).  

The pdf of the lognormal distribution parameterized 

with the mean (µ) and standard deviation (σ) of the 

underlying normal distribution is given as: 

𝑓(𝜆) =
1

𝜆𝜎√2𝜋
exp (−

[ln(𝜆) − µ]2

2𝜎2
) , (0 < 𝜆 < ∞) 

An important property of the lognormal is its relationship 

to the normal distribution. If Y is lognormal, then X = 

ln(Y) is normal. The lognormal is a good choice for 

representing failure rate uncertainty because it is strictly 

defined on the positive x axis, and the distribution has a 

heavy (stretched out) right tail (i.e., right skewed).   

1.2 Central Tendency 

A measure of central tendency (or centrality) is a single 

value that describes a central or typical value for a 

probability distribution or set of data. It may refer to the 

center of probability (median) or center of probability 

density (mean) or a most probable value (mode). The 

mean, median and mode are the most common examples 

and are defined below.  In subsequent sections, we will 

look at the mean, mode and median, and explain some of 

the conditions for their appropriate usage. 

In the case of a probability distribution p(x) defined on a 

finite set {x1, x2, …, xn}, the arithmetic mean or expected 

value of x is a weighted sum: 

𝐸[𝑿] = ∑ 𝑥𝑝(𝑥) 

For a continuous distributions, the arithmetic mean is:  

𝐸[𝑿] =  ∫ 𝑥𝑓(𝑥) 𝑑𝑥, 

where the weighting function f(x) is the pdf of X. 

Noteworthy is the fact that the mean is susceptible to the 

influence of outliers. These are values that lie far from the 

central body of the distribution. The effect of large 

outliers is to pull the mean away from the median towards 

the outlier. This can be understood by considering that the 

mean is analogous to the center of mass. 

The median or 50th percentile is the midpoint where half 

of the probability (area under the pdf) lies to either side. 

∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 =  
1

2

∞

𝑚𝑒𝑑𝑖𝑎𝑛

𝑚𝑒𝑑𝑖𝑎𝑛

−∞

 

The mode is a local maximum or peak of the pdf.  

1.3 Dispersion 

Dispersion refers to the spread of the distribution. A 

measure of dispersion is a non-negative real number that 

quantifies the deviation from the central tendency. A large 

deviation (relative to the magnitude of the central 

tendency) is indicative of a distribution that is spread out 

or dispersed. Examples to be discussed are the variance, 

the standard deviation, and the error factor. 

 

The variance is the expected value of the squared 

deviations about the mean: 

 

𝑉𝑎𝑟[𝑿] = 𝐸[(𝑿 − 𝐸[𝑿])2] 
 

The square root of the variance is the standard deviation: 

 

𝜎 =  √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

 

A nice property of the standard deviation is that it has 

the same units as the quantity being measured. 

 

A frequently used measure of dispersion for the 

lognormal is the error factor (EF). The EF defines 

dispersion about the median.  The EF is defined as the 

square root of the 95th percentile divided by the 5th 

percentile. Equivalently, the EF is equal to the 50th 

divided by the 5th and the 95th divided by the 50th as 

summarized in the following equivalence:  

𝐸𝐹 = √
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

5𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
=

95𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

50𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
=

50𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

5𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
 

The EF has a minimum value of one, which represents 

certainty.   

1.4 Failure Rate Uncertainty  

Component failure rates (λ) are not physical quantities; 

that is, they cannot be measured directly but must be 

inferred. Operational or test reliability data expressed as 

total exposure time and number of failures from which to 

infer the failure rate for highly reliable components, are 



scarce. Failure rates have to be inferred by similarity to 

generic sources, such as those published in component 

reliability databases. In some cases, estimates are 

developed using engineering judgment or by eliciting the 

estimates from subject matter experts.  

In the Bayesian interpretation, the parameter value is 

random (synonymous with uncertain) and is represented 

by a probability distribution. Previous research evaluated 

different distributions to represent the uncertainty of the 

parameter λ [1]. They found the lognormal distribution 

was appropriate for simple components with a single 

failure mode. Basic Event quantification for PRA then 

becomes one of estimating the central tendency and 

dispersion of the lognormal distribution, and then using 

Monte Carlo methods to simulate the probability 

distribution for failure of the component. The lognormal 

failure rate uncertainty pdf is illustrated in the figure 

below. 

 

Uncertainty has many sources in addition to variation 

among individuals within a population and lack 

knowledge due to sparse data. However, this paper 

examines the implications of applying uncertainty around 

central tendency estimates in order to quantify degree of 

belief – in particular when expressing degree of belief via 

the shape of the lognormal pdf.    

2. The Bayesian Approach 

Application of classical life data analysis requires 

component data in the form of failures and exposure time 

or number of demands. The data is fit to a distributional 

model of times to failure, goodness of fit tests are 

performed, and measures of centrality and dispersion are 

estimated. The model’s parameters are assumed to be 

fixed (but unknown) quantities. The neighborhood in 

which the parameter value lies is estimated from the 

sampling distribution and is expressed as a confidence 

interval. Classical prediction methods rely solely on the 

data and do not permit prior knowledge to influence the 

estimate.  

Highly reliable components produced in small quantities, 

such as in space applications, do not have enough 

operating time and failure history to yield useful 

confidence bounds using classical statistical data analysis 

methods.   

Bayesian approach is able to address the challenges 

described above because it admits prior experience into 

the estimation procedure in the form of a prior degree of 

belief about the likely values of the parameter in the form 

of a prior distribution. Specific data in the form of a 

likelihood function is then applied through Bayes 

Theorem to update the prior belief to yield the posterior 

uncertainty pdf.  

Bayesian updating produces normative results in that if 

one believes the prior distribution, then one ought to 

believe the posterior distribution. It is important to note 

the implication of the previous statement. If after 

Bayesian updating, one does not believe the posterior 

distribution, then the prior is likely wrong. Hence it is 

important for the prior distribution to be developed and 

reviewed in a deliberative process with the help of subject 

matter experts to assure credibility. 

In our experience, engineers with specific discipline 

expertise are familiar with the shape and properties of the 

normal probability distribution, but have little direct 

experience with skewed distributions, such as the 

lognormal. Recall, the normal probability density 

function is symmetric about its global maximum (mode). 

The median (50th percentile), and mean coincide with the 

mode. Perhaps due to the coincidence of measures of 

central tendency of the normal distribution, subject matter 

experts do not understand the relationship of these 

measures when using the lognormal pdf. Subject matter 

experts who often assist PRA analysts in the 

quantification of the prior failure rate distribution must be 

educated to develop an intuitive understanding of how the 

lognormal distribution morphs as its central tendency and 

dispersion measures are varied. One of the main purposes 

of this paper is to illustrate with specific examples the 

effects of varying one of the parameters, such as the 

dispersion while holding another fixed to show the effect 

on the remaining parameters.  

Specifying any two parameter values completely specifies 

the lognormal distribution. Thus we can solve for µ and σ 

and then fill in the remaining parameter values in the table 

using the formulas.  

 

 



Parameter As a function of µ and σ 

Mean exp (µ +
𝜎2

2
) 

Median exp(µ) 

Mode exp(µ − 𝜎2) 

Standard Deviation √[exp(𝜎2) − 1]exp(2µ + 𝜎2) 

Error Factor exp(1.64485𝜎) 

 

3. Fundamental Examples of Uncertainty 

Estimation 

There is strong evidence that we perceive things 

logarithmically [2]. In other words, when we think 

something is twice as big, it might be more like eight 

times as big.  

PRA analysts are often in the position of asking experts to 

estimate the percentiles of the uncertainty pdf.  Experts 

are prone to overconfidence bias. For example, if we elicit 

the 5th and 95th percentiles, experts are likely to give 

answers that are closer to the 25th and 75th percentiles.  

This is especially true for rare events. 

Component reliability data developed to support 

reliability allocation goals are an important source of data 

to help develop prior uncertainty estimates for use in the 

PRA. Reliability predictions are reported as point 

estimates. The PRA has to estimate uncertainty to create 

the probability distribution that represent degree of belief. 

Heuristic approaches have been used. These approaches 

consider the data source applicability with respect to 

similarity. Multipliers can be applied to convert the data 

from the reported operating environment to a more 

applicable one. The heuristic method proscribes using the 

provided point estimate, which is typically assumed to be 

an estimate of the mean failure rate and then, depending 

on data source applicability, apply an assumed error factor 

based on heuristic guidelines. The resultant prior 

distribution is then assumed to be a lognormal distribution 

with the provided mean and the heuristic error factor.  

Clearly, any recipe for developing a prior needs to be 

augmented by visualization to confirm that the resulting 

distribution is credible. The discussion that follows 

illustrates a concern that when the point estimate is 

assumed to be the mean failure rate, the resultant pdf is 

counterintuitive – and is in fact non-conservative. PRA 

methodology tries to achieve the best estimate of the risk. 

But, in questionable cases should err on the side of 

conservatism.   

The discussion that follows compares several 

modifications to the aforementioned heuristic approach. 

The comparison cases assume the point estimate 

represents one of the measures of central location (i.e. the 

mean, median or the mode) and is fixed, while the error 

factor is applied or varied. We then illustrate with a 

hypothetical trade study in which the recommended 

alternative, from a risk standpoint, depends on the 

measure of central location that is held fixed.  

The figures below illustrate the effect on the resultant 

prior pdf for the three variations of the heuristic method 

using assumed measures of dispersion error factors of 3 

and 9, respectively. What is given in the contractor’s 

reliability analysis report is the point estimate for failure 

rate (λ) of 50 failures per million hours (FPMH) of 

exposure. The solid green curve is the base case assuming 

the point estimate is the mean; the dashed orange curve 

assumes the point estimate is the median; and the dotted 

purple curve assumes the point estimate is the mode. The 

square point on each of the resultant lognormal pdf curves 

is the median (50th percentiles) and the triangle is the 

mean.  

 



Central Value = 50, Error Factor = 3 

Fixed  Mean Median Mode 

Mean 50.00000 62.49422 97.62917 

Median 40.00370 50.00000 78.11056 

Mode 25.60710 32.00592 50.00000 

5th 13.33457 16.66667 26.03685 

95th 120.0111 150.0000 234.3317 

 

 

Central Value = 50, Error Factor = 9 

Fixed  Mean Median Mode 

Mean 50.00000 122.0252 726.7891 

Median 20.48757 50.00000 297.80292 

Mode 3.439787 8.394814 50.00000 

5th 2.276397 5.555556 33.089213 

95th 184.3882 450.0000 2680.2263 

 

Notice that when the mean is assumed fixed, the resultant 

lognormal pdf is forced to the left. This may not be the 

desired result. 

The next set of results are similar comparisons, but allows 

us to view what is happening from a different perspective. 

The first case begins with holding the mean fixed to a 

value of 50 while varying the error factor between 3 and 

9. In the other cases we hold the median and mode fixed 

while varying the error factor. 

 

 



 

We observe that the general shape of the density curves 

are quite sensitive to holding the mean and mode fixed. 

Therefore, we strongly discourage heuristics that do not 

involve steps that require analysists and subject matter 

experts to assess visualizations of the resulting density 

curves.  

This final example illustrates a hypothetical trade study. 

It compares a highly reliable, heritage, zero failure 

tolerant design with a retrofitted redundant option that is 

not only susceptible to common cause failure modes but 

is such that each leg of redundancy is considered less 

reliable than the heritage design. 

The heritage design has a well-established lognormal 

failure rate distribution with a mean failure rate of 50 

FPMH and an error factor of 3. The legs of the redundant 

design are estimated (through engineering judgement) to 

have failure rates of 150 and 200; and associated error 

factors of 6 and 9, respectively. A common cause failure 

basic event is also assumed to follow a beta distribution 

with a 5th percentile of 0.1 and a 95th percentile of 0.4 [3]. 

The time both options are exposed to failure is 8 hours. 

The following figure compares the risk of the heritage 

option with three alternative methods of quantifying the 

uncertainty of the risk of the redundant design option: by 

assuming the provided failure rates are fixed and 

represent either the mean, median or mode. 

 

 

These results demonstrate that the effects on risk-

informed decisions by the mere choice of the central 

parameter about which uncertainty is estimated can, in 

fact, be pivotal! 

4. Uncertainty Estimation Cheat Sheet (for 

Lognormal Uncertainty) 

The purpose of the cheat sheet is to reinforce an 

understanding of the cause and effect relationships 

between the adjusting of parameters (that measure central 

tendency and dispersion) and their risk implications. The 

cheat sheet is qualitative in nature and must be taken with 

a grain of salt. Ultimately, the choice of which measure of 

central tendency to hold fixed is subjective. However, it 



is important to understand and consider the risk 

implications of these choices within the context of the 

assumptions and beliefs of those involved in the 

estimation process. 

 

5. Conclusion 

Although many cases are presented, the typical case for 

aerospace PRA is to assume the measure of central 

tendency is the mean and keeps it fixed while increasing 

the uncertainty (error factor). Unfortunately, this is often 

the case without strong rationale. Our recommended 

default for heuristic estimation of lognormal uncertainty 

is to quantify the median from the given data and then 

adjust the error factor accordingly. The median 

automatically remains fixed since it is independent of the 

error factor. Our recommendation holds even in the case 

where data uncertainty is absent and only a central value 

is given. In this case, the data tells us the mean, median 

and mode coincide. Therefore, we proceed by fixing the 

median to the given central value while estimating 

uncertainty about the median to obtain results. 

Theoretical distributions do not always behave intuitively. 

Care must be taken when adjusting the parameters of a 

distribution as part of a heuristic or other method. One 

ought to understand the relationships and effects of all 

relevant parameters as well as the risk implications. It is 

our hope that the Uncertainty Estimation Cheat Sheet (for 

Lognormal Uncertainty) will help those involved in the 

PRA process (such as managers, subject matter experts 

and PRA analysts) make effective technical contributions 

to decision-making. 
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