PYTHAGORAS THEOREM

Pythagoras Theorem

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

Given

 $\triangle ACB$ is a right angled triangle in which m $\angle C = 90^{\circ}$ and m $\overline{BC} = a$, m $\overline{AC} = b$ and m $\overline{AB} = c$.

To Prove

$$c^2 = a^2 + b^2$$

Construction

Draw \overline{CD} perpendicular from C on \overline{AB} .

Let $\overline{mCD} = h$, $\overline{mAD} = x$ and $\overline{mBD} = y$. Line segment CD splits $\triangle ABC$ into two $\triangle ABC$ and BDC which are separately shown in the figures (ii)-a and (ii)-b respectively.

Nroof (Úsing similar Δs)

	Statements	Reasons Refer to figure(ii)-a and (i) Common – self congruent Construction – given, each angle = 90° ∠C and ∠B, complements of ∠A. Congruency of three angles (Measures of corresponding sides of				
In ∴	$\triangle ADC \longleftrightarrow \triangle ACB$ $\angle A \cong \angle A$ $\angle ADC \cong \angle ACB$ $\angle C \cong \angle B$ $\triangle ADC \sim \triangle ACB$ $x = \frac{b}{a}$					
or	$b c$ $x = \frac{b^2}{c} (i)$	similar triangles are proportional)				

Again in
$$\triangle BDC \longleftrightarrow \triangle BCA$$

$$\angle B \cong \angle B$$

$$\angle BDC \cong \angle BCA$$

$$\angle C \cong \angle A$$

$$\therefore \qquad \frac{y}{a} = \frac{a}{c}$$

or
$$y = \frac{a^2}{c}$$
(ii)

But
$$y + x = e$$

$$\therefore \frac{a^2}{c} + \frac{b^2}{c} = c$$

or
$$a^2 + b^2 = c^2$$

i.e.,
$$c^2 = a^2 + b^2$$

Refer to figure (ii)-b and (i)

Common-self congruent

Construction –given, each angle = 90°

 $\angle C$ and $\angle A$, complements of $\angle B$

Congruency of three angles.

(Corresponding sides of similar triangles are proportional).

Supposition.

By (i) and (ii)

Multiplying both sides by c.

Corollary

In a right angled ${}^{\Delta ABC}_{C}$, right angled at A.

(i)
$$\overline{AB}^2 = \overline{BC}^2 - \overline{CA}^2$$

(ii)
$$\overrightarrow{AC}^2 = \overrightarrow{BC}^2 - \overrightarrow{AB}^2$$

Converse of Pythagoras' Theorem

If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a right angled triangle.

Given In a $\triangle ABC$, $\overrightarrow{mAB} = c$, $\overrightarrow{mBC} = a$

and $\overrightarrow{MAC} = b$ such that $a^2 + b^2 = c^2$.

To Prove ΔACB is a right angled triangle.

Construction Draw \overline{CD} perpendicular to \overline{BC} such that $\overline{CD} \cong \overline{CA}$. Join the points B and D.

Proof

Statements	Daggara			
Δ DCB is a right –angled triangle. ∴ $(mBD)^2 = a^2 + b^2$ But $a^2 + b^2 = c^2$ ∴ $(mBD)^2 = c^2$ or $mBD = c$ Now in Δ DCB $\leftrightarrow \Delta$ ACB	Construction Pythagoras theorem Given Taking square root of both sides.			
CD≅CA	Construction			

-					
BC	~	R	0		
DU		D			

DB≅AB

- ∴ ADCB ≅ AACB
- ∴ ∠DCB ≅ ∠ACB

But $m\angle DCB = 90^{\circ}$

 \therefore m \angle ACB = 90°

Hence the \triangle ACB is a right-angled triangle.

Corollary: Let c be the longest of the sides a, b and c of a triangle.

• If $a^2 + b^2 = c^2$, then the triangle is right.

Common

Each side = c.

 $S.S.S. \cong S.S.S.$

(Corresponding angles of congruent triangles)

Construction

- If $a^2 + b^2 > c^2$, then the triangle is acute.
- If $a^2 + b^2 < c^2$, then the triangle is obtuse.

Exercise 15

- 1. Verify that the Δs having the following measures of sides are right-angled.
- (i) a = 5 cm, b = 12 cm, c = 13 cm

Ans.
$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $(13)^2 = (12)^2 + (5)^2$
 $169 = 144 + 25$
 $169 = 169$

- .. The triangle is right angled.
- (ii) a = 1.5 cm, b = 2 cm, c = 2.5 cm

Ans.
$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $(2.5)^2 = (1.5)^2 + (2)^2$
 $625 = 2.25 + 4$
 $6.25 = 6.25$

- .. The triangle is right angled.
- (iii) a = 9 cm, b = 12 cm, c = 15 cm

Ans.
$$(\text{Hyp})^2 = (\text{Perp.})^2 + (\text{Base})^2$$

 $(15)^2 = (12)^2 + (9)^2$
 $225 = 144 + 81$
 $225 = 225$

- :. The triangle is right angled.
- (iv) a = 16 cm, b = 30 cm, c = 34 cm

Ans.
$$(\text{Hyp})^2 = (\text{Perp.})^2 + (\text{Base})^2$$

 $(34)^2 = (30)^2 + (16)^2$
 $1156 = 900 + 256$

- 1156 = 1156
- :. The triangle is right angled.
- 2. Verify that $a^2 + b^2$, $a^2 b^2$ and 2ab are the measures of the sides of a right angled triangle where a and b are any two real numbers (a > b).

Ans. In right angle triangle.

Comparing (i) and (iv), we get $(a^2 - b^2)^2 + (2ab)^2 = (a^2 + b^2)^2$

Hence $a^2 + b^2$, $a^2 - b^2$ and 2ab are measures of the sides of a right angled triangle where $a^2 + b^2$ is Hypotenuse.

3. The three sides of a triangle are of measure 8, x and 17 respectively. For what value of x will it become base of a right angled triangle?

Ans:

Consider a right angled triangle

With
$$\overline{AB} = x$$

 $\overline{BC} = 8$
and $\overline{AC} = 17$

If x is the base of right angled \triangle ABC then we know by Pythagoras theorem that

$$(hyp)^{2} = (Base)^{2} + (perp)^{2}$$

$$(17)^{2} = x^{2} + (8)^{2}$$

$$289 = x^{2} + 64$$

$$x^{2} + 64 = 289$$

$$x^{2} = 289 - 64$$

$$x^{2} = 225$$

$$x = \sqrt{225}$$

As x is measure of side So x = 15 units 4. In an isosceles \triangle , the base $\overline{BC} = 28$ cm, and $\overline{AB} = \overline{AC} = 50$ cm.

If $\overline{AD} \perp \overline{BC}$, then find:

(i) Length of AD(ii) Area of ΔABC

Given

 $\frac{\overline{AC} = \overline{MAB} = 50 \text{ cm}}{\overline{ABC} = 28 \text{ cm}}$ $\frac{\overline{MBC} = 28 \text{ cm}}{\overline{AD \perp BC}}$

To Prove

 $\overrightarrow{MAD} = ?$ Area of $\triangle ABC = ?$

Proof

Statements In right angled triangle mCD =14cm $m\overline{AC} =$ 50cm $(mAD)^2 = (mAC)^2 - (mCD)^2$ $(mAD)^2$ $(50)^2 - (14)^2$ 2500 - 1962304 $\sqrt{(\text{mAD})^2}$ $\sqrt{2304}$ mAD 18 cm Base × Altitude

(ii) Area of
$$\triangle ABC = \frac{Base \times Altitude}{2}$$

$$= \frac{28 \times 48}{2}$$

$$= 14 \times 28$$

$$= 672 \text{ sq.cm}$$

Reasons

 $\overline{CD} = \frac{1}{2} m\overline{BC}$

Given

 $(mAC)^2 = (mAD)^2 - (mCD)^2$ (by Pythagoras theorem)

Taking square root of both sides

In a quadrilateral ABCD, the diagonals \overline{AC} and \overline{BD} are perpendicular to each other. Prove that:

$$\overline{\text{mAB}}^2 + \overline{\text{mCD}}^2 = \overline{\text{mAD}}^2 + \overline{\text{mBC}}^2$$
.

Given: Quadrilateral ABCD diagonal AC and BD are perpendicular to each other.

To Prove:

$$m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AD})^2 + m(\overline{BC})^2$$

Proof

Statements	Reasons
In right triangle AOB	*
$m\left(\overline{AB}\right)^2 = m\left(\overline{AO}\right)^2 + m\left(\overline{OB}\right)^2$,(i)	By Pythagoras theorem
In right triangle COD	
$m\left(\overline{CD}\right)^2 = m\left(\overline{OC}\right)^2 + m\left(\overline{OD}\right)^2$,(ii)	By Pythagoras theorem
In right triangle AOD	() () .
$m(\overline{AD})^2 = m(\overline{AO})^2 + m(\overline{OD})^2 \dots, (iii)$	By Pythagoras theorem
In right triangle BOC	
$m(\overline{BC})^2 = m(\overline{OB})^2 + m(\overline{OC})^2$,(iv)	By Pythagoras theorem
$m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AO})^2 + m(\overline{OB})^2 + m(\overline{OC})^2 + m(\overline{OC})^2$	By adding (i) and (ii)
And the state of t	to the second of
$m(\overline{AD})^2 + m(\overline{BC})^2 = m(\overline{AO})^2 + m(\overline{OD})^2 + m(\overline{OB})^2 + m(\overline{OC})^2$	By adding (ii) and (iv)
$(m\overline{AB})^2 + (m\overline{CD})^2 = (m\overline{BC})^2 + (m\overline{AD})^2$ (i) In the AARC as shown in the figure m (ACP)	By adding (v) and (vi)

.....(ii)

6. (i) In the $\triangle ABC$ as shown in the figure, m $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Find the lengths a, h and b if mBD = 5 units and mAD = 7 units.

in right angled
$$\triangle ADC$$

 $b^2 = 49 + h^2$

in right angled $\triangle ABC$ $a^2+b^2=144$ (iii)

adding (i) and (ii)

$$a^2+b^2 = 74+2h^2$$
..... (iv)

from (iii) and (iv)

$$74 + 2h^2 = 144$$

 $2h^2 = 144-74$
 $2h^2 = 70$
 $h^2 = 35$
 $h = \sqrt{35}$

Now we will find a and b

Put

Put
$$h^2 = 35 \text{ (in Eq. 1)}$$

 $a^2 = 25+35$
 $a^2 = 60$
 $a = \sqrt{60}$
 $= \sqrt{4 \times 15}$
 $a = 2\sqrt{15}$
now put $h^2 = 35 \text{ (in Eq. 2)}$
 $b^2 = 49+35$
 $b^2 = 48$
 $b = \sqrt{84}$
 $b = \sqrt{4 \times 21}$
 $b = 2\sqrt{21}$

SO
$$a = 2\sqrt{15}$$
$$h = \sqrt{35}$$
$$b = 2\sqrt{21}$$

Find the value of x in the shown in (ii) th figure.

In right angled triangle ADC

$$m(\overline{AC})^2 = m(\overline{AD})^2 + m(\overline{DC})^2$$

(13)²= (AD)² + (5)²
169 = (AD)² + 25

$$(AD)^2 = 169 - 25$$

 $(AD)^2 = 144$
 $AD = \sqrt{144}$
 $AD = 12cm$
In right angled triangle ABD
 $(AB)^2 = (AD)^2 + (BD)^2$
 $(15)^2 = (12)^2 + x^2$
 $225 = 144 + x^2$
 $x^2 = 225 - 144$
 $x^2 = 81$
 $x = 9 cm$

A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land at the airport?

Here A be the position of plane and B be the position of airport.

$$\overrightarrow{mAC} = 500m$$

 $\overrightarrow{mBC} = 300m$
 $\overrightarrow{mAB} = ?$

Applying Pythagoras theorem on right angled triangle ABC

$$|\overline{AB}|^2 = |\overline{AC}|^2 + |\overline{BC}|^2$$

$$= (500)^2 + (300)^2$$

$$= 250000 + 90000$$

$$= 34000$$

$$|\overline{AB}|^2 = 34 \times 10000$$
so
$$|\overline{AB}| = \sqrt{34 \times 10000}$$

$$= \sqrt{34 \times 100 \times 100}$$

$$= 100\sqrt{34}m$$

So required distance is $100\sqrt{34}m$

8. A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8m away from the base of the wall. How high up the wall will the ladder reach?

Ans. Let the height of ladder = x m

in right angled triangle

9. A student travels to his school by the route as shown in the figure. Find mAD, the direct distance from his house to school.

According to figure, $\overline{\text{mAB}} = 2\text{km}$

$$m\overline{BC} = 6km$$

$$m\overline{CD} = 3km$$

Here mAB and mCD are perpendicular

Perpendicular = $\overline{AB} + \overline{CD}$

According to Pythagoras theorem $(H)^2 = P^2 + B^2$

$$= 2 + 3$$

$$= 5 \text{km}$$
ding to Pythagoras theorem

$$(m \overline{AD})^2 = (5)^2 + (6)^2 = 25 + 36$$

 $(m \overline{AD})^2 = 61$
 $m \overline{AD} = \sqrt{61} \text{ Km}$

- 10. Which of the following are true and which are false?
 - ✓(i) In a right angled triangle greater angle is 90°. (T)
 - (ii) In a right angled triangle right angle is 60°. (F)
 - (iii) In a right triangle hypotenuse is a side opposite to right angle. (T)
 - (iv) If a, b, c are sides of right angled triangle with c as longer side then $c^2 = a^2 + b^2$. (T)
 - (v) If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm. (T)
 - (vi) If hypotenuse of an isosceles right triangle is $\sqrt{2}$ cm then each of other side is of length 2 cm.(F)
- 11. Find the unknown value in each of the following figures.

By Pythagoras theorem

$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $x^2 = (4)^2 + (3)^2$

$$x^2 = 16 + 9$$

$$x^2 = 25 \Rightarrow x = \sqrt{25}$$

$$x = 5cm$$

(ii)

By Pythagoras theorem

$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

$$(10)^2 = (6)^2 + (x)^2$$

$$100 = 36 + x^2$$

$$x^2 = 64$$

$$x = \sqrt{64}$$

$$X = 8cm$$

(iii)

By Pythagoras theorem

$$(Hyp)^{-} = (Perp.)^{2} + (Base)^{2}$$

$$(13)^2 = (x)^2 + (2)^2$$

$$169 = x^2 + 25$$

$$x^2 = 169 - 25$$

$$x^2 = 144$$

$$x = \sqrt{144}$$

$$x = 12cm$$

(iv)

By Pythagoras theorem

$$(Hyp.)^2 = (Perp.)^2 + (Base)^2$$

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$

$$2 = x^2 + 1$$

$$x^2 = 2 - 1$$

$$x^2 = 1$$

$$x = \sqrt{1} = 1$$
cm

OBJECTIVE

- 1. In a right angled triangle, the square of the length of hypotenuse is equal to the _____ of the squares of the lengths of the other two sides
 - (a) Sum
 - (b) Difference
 - (c) Zero
 - (d) None

- 2. If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a _____ triangle.
 - (a) Right angled
 - (b) Acute angled
 - (c) Obtuse angled
 - (d) None

- 3. Let c be the longest of the sides a, b and c of a triangle. If a² +b² = c², then the triangle is ____:
 (a) Right
 (b) Acute
 (c) Obtuse
 - (d) None
- 4. Let c be the longest of the sides a, b and c of a triangle. If $a^2 + b^2 > c^2$ then triangle is:
 - (a) Acute
 - (b) Right
 - (c) Obtuse
 - (d) None
- 5. Let c be the longest of the sides a, b and c of a triangle of $a^2+b^2 < c^2$, then the triangle is:
 - (a) Acute
 - (b) Right

- (c) Obtuse
- (d) None
- 6. If 3cm and 4cm are two sides of a right angled triangle, then hypotenuse is;
 - (a) 5cm
 - (b) 3cm
 - (c) 4cm
 - (d) 2cm
- 7. In right triangle ____ is a side opposite to right angle.
 - (a) Base
 - (b) Perpendicular
 - (c) Hypotenuse
 - (d) None

ANSWER KEY

1.	a	2.	a	3.	a	4.	a	5.	С
6.	a	7.	С				-	J	A