Fibonacci Numbers

Recall the definition of the Fibonacci numbers.

Definition. The *Fibonacci sequence* is the sequence of numbers F_0, F_1, F_2, \cdots defined recursively by the conditions $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all integers $n \ge 2$.

Here is a table of the first 1 + 20 Fibonacci numbers:

																					20
F_n	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181	6765

There are many interesting relationships among Fibonacci Numbers. We list some of these now.

1. Show
$$\sum_{k=1}^{n} F_k = F_{n+1} - 1$$
 for all integers $n \ge 1$.

- 2. Show $\sum_{k=1}^{n} F_{2k-1} = F_{2n}$ for all integers $n \ge 1$.
- 3. Show $\sum_{k=0}^{2n} (-1)^k F_k = F_{2n-1} 1$ for all integers $n \ge 1$.
- 4. Show $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$ for all integers $n \ge 1$.
- 5. Show $F_{n-1}F_{n+1} F_n^2 = (-1)^n$ for all integers $n \ge 1$.
- 6. Show $F_{2n+5} = 3F_{2n+3} F_{2n+1}$ for all integers $n \ge 0.1$
- 7. Show $F_{2n+4} = 3F_{2n+2} F_{2n}$ for all integers $n \ge 0.^2$
- 8. Show $F_n^2 + F_{n-1}^2 = F_{2n-1}$ for all integers $n \ge 1.^3$
- 9. Show F_{3n} is divisible by 2 for all integers $n \ge 0$.
- 10. Show F_{5n} is divisible by 5 for all integers $n \ge 0$.
- 11. Suppose S_0, S_1, S_2, \cdots is an arbitrary sequence satisfying the recursion $S_n = S_{n-1} + S_{n-2}$ for all $n \ge 2$.
 - (a) Show $S_n = S_0 F_{n-1} + S_1 F_n$ for all integers $n \ge 1$.
 - (b) Show $F_{a+b+1} = F_a F_b + F_{a+1} F_{b+1}$ for all $a, b \in \mathbb{N}_0$.⁴
 - (c) Show F_n divides F_{nk} for all $n \in \mathbb{N}_0$ and all $k \in \mathbb{N}_0$.⁵

(d) Show
$$F_{a+r}F_{b+r} - F_{c+r}F_{d+r} = (-1)^r (F_a F_b - F_c F_d)$$
 for all $a, b, c, d, r \in \mathbb{N}_0$ with $a + b = c + d$.

12. Show
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$
 for all integers $n \ge 1$.

13. Prove that for all $n \in \mathbb{N}_0$ there exist unique $s, t \in \mathbb{N}_0$ such that the following conditions all hold:

- (a) $n = F_s + F_t$
- (b) |s-t| > 1
- (c) $s \neq 2 \neq t$

¹HINT: You don't need induction–the Fibonacci recursion is enough.

²HINT: The same method from the previous problem will work here...

³HINT: Use induction and the preceding two identities to prove this.

 $^{^4\}mathrm{HINT}:$ Make a related sequence and use part a.

⁵HINT: Use part b. You can use induction either on n or on k-it's up to you to figure out which one makes sense. ⁶HINT: Induct on $r \in \mathbb{N}_0$ using part b for the inductive step.