Recall the definition of the Fibonacci numbers.
Definition. The Fibonacci sequence is the sequence of numbers $F_{0}, F_{1}, F_{2}, \cdots$ defined recursively by the conditions $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for all integers $n \geq 2$.

Here is a table of the first $1+20$ Fibonacci numbers:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F_{n}	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181	6765

There are many interesting relationships among Fibonacci Numbers. We list some of these now.

1. Show $\sum_{k=1}^{n} F_{k}=F_{n+1}-1$ for all integers $n \geq 1$.
2. Show $\sum_{k=1}^{n} F_{2 k-1}=F_{2 n}$ for all integers $n \geq 1$.
3. Show $\sum_{k=0}^{2 n}(-1)^{k} F_{k}=F_{2 n-1}-1$ for all integers $n \geq 1$.
4. Show $\sum_{k=0}^{n} F_{k}^{2}=F_{n} F_{n+1}$ for all integers $n \geq 1$.
5. Show $F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}$ for all integers $n \geq 1$.
6. Show $F_{2 n+5}=3 F_{2 n+3}-F_{2 n+1}$ for all integers $n \geq 0 .{ }^{1}$
7. Show $F_{2 n+4}=3 F_{2 n+2}-F_{2 n}$ for all integers $n \geq 0 .{ }^{2}$
8. Show $F_{n}^{2}+F_{n-1}^{2}=F_{2 n-1}$ for all integers $n \geq 1$. ${ }^{3}$
9. Show $F_{3 n}$ is divisible by 2 for all integers $n \geq 0$.
10. Show $F_{5 n}$ is divisible by 5 for all integers $n \geq 0$.
11. Suppose $S_{0}, S_{1}, S_{2}, \cdots$ is an arbitrary sequence satisfying the recursion $S_{n}=S_{n-1}+S_{n-2}$ for all $n \geq 2$.
(a) Show $S_{n}=S_{0} F_{n-1}+S_{1} F_{n}$ for all integers $n \geq 1$.
(b) Show $F_{a+b+1}=F_{a} F_{b}+F_{a+1} F_{b+1}$ for all $a, b \in \mathbb{N}_{0} .^{4}$
(c) Show F_{n} divides $F_{n k}$ for all $n \in \mathbb{N}_{0}$ and all $k \in \mathbb{N}_{0} .{ }^{5}$
(d) Show $F_{a+r} F_{b+r}-F_{c+r} F_{d+r}=(-1)^{r}\left(F_{a} F_{b}-F_{c} F_{d}\right)$ for all $a, b, c, d, r \in \mathbb{N}_{0}$ with $a+b=c+d .{ }^{6}$
12. Show $F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$ for all integers $n \geq 1$.
13. Prove that for all $n \in \mathbb{N}_{0}$ there exist unique $s, t \in \mathbb{N}_{0}$ such that the following conditions all hold:
(a) $n=F_{s}+F_{t}$
(b) $|s-t|>1$
(c) $s \neq 2 \neq t$
[^0]
[^0]: ${ }^{1}$ HINT: You don't need induction-the Fibonacci recursion is enough.
 ${ }^{2}$ HINT: The same method from the previous problem will work here...
 ${ }^{3}$ HINT: Use induction and the preceding two identities to prove this.
 ${ }^{4}$ HINT: Make a related sequence and use part a.
 ${ }^{5}$ HINT: Use part b. You can use induction either on n or on k-it's up to you to figure out which one makes sense.
 ${ }^{6}$ HINT: Induct on $r \in \mathbb{N}_{0}$ using part b for the inductive step.

