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1 Relations

Recall the definition of a relation.

Definition. Let A and B be sets. A relation A
R−→ B from A to B is a subset R ⊆ A×B.

We will sometimes say R is a relation on a set S to mean a that R is a relation S
R−→ S.

Here is a small example of a relation.

Example 1. We have a relation {1, 2, 3} R−→ {4, 5} given by R = {(1, 4), (2, 4), (1, 5)}.

Relations are a mathematical model of relationships between the elements of various sets. The following is a very
concrete example illustrating this idea.

Example 2. Let P = {x|x is a person}. There are many meaningful relations on the set P .

• The relation P
sis−−→ P is defined by (x, y) ∈ sis when x and y are sisters.

• The relation P
mot−−→ P is defined by (x, y) ∈ mot when x is the mother of y.

• The relation P
stu−−→ P is defined by (x, y) ∈ stu when x was in a class taught by y.

• The relation P
fri−−→ P is defined by (x, y) ∈ fri when x any y are mutually friends.

Remark. It is cumbersome to write “(x, y) ∈ R”. We will often abbreviate this using the infix notation x R y instead.

We will often depict relations using diagrams. For a relation A
R−→ B, we will arrange the elements of A at the

left, the elements of B at the right, and draw a line segment between two elements a ∈ A and b ∈ B when a R b.
Doing so, we can depict the relation from Example 1 above in the following way:
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Relations have very little structure; in particular, there are no requirements on the subset R ⊆ A × B. If we add
some simple conditions on our relations, they often become more meaningful.

The following notion is a mathematical abstraction of some fundamental properties of equality.

Definition. An equivalence relation on set S is a relation R ⊆ S × S such that the following hold for all x, y, z ∈ S:

1. Element (x, x) ∈ R. (Reflexive)

2. If (x, y) ∈ R, then (y, x) ∈ R. (Symmetric)

3. If (x, y), (y, z) ∈ R, then (x, z) ∈ R. (Transitive)

Notice that reflexivity, symmetry, and transitivity only make sense when we have a relation R ⊆ S × S.

Example 3. The following are some examples of equivalence relations:

• Equality is an equivalence relation on any given set.

• Let P be the set of all people. The relation P
BDay−−−−→ P defined by x Bday y when x and y have the same

birthday is an equivalence relation on P .

Example 4. The following set gives a relation on the set S = {0, 1, 2, 3, 4}:

{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}

Is this relation reflexive? Symmetric? Transitive?



math314-02-s19 (Eppolito) Functions and Relations 6 Feb 2019

Problem 1. Construct a relation which has the properties in X for each subset X ⊆ {reflexive, symmetric, transitive}.
Try to make your examples as small as possible in terms of number of elements of the relation R and the set S.

Problem 2. Let F ⊆ pow(S) for set S, and suppose ∅ /∈ F .

1. Is the relation F
I−→ F where A I B when A ∩B 6= ∅ always an equivalence relation?

2. Is the relation F
D−→ F where A D B when A ∩B = ∅ always an equivalence relation?

3. Is the relation F
R−→ F where A R B when A and B have the same number of elements an equivalence relation?

Another way to visualize a relation R ⊆ S × T is via a directed graph (we’ll learn more about these later). Our
directed graph has a point representing each element of S ∪ T and an arrow pointing from s to t whenever s R t.

Example 5. The relation R = {(1, 2), (2, 3), (3, 1), (1, 1)} has the following directed graph:
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Problem 3. Draw the directed graph for the relation from Example 4.

Another very important type of relation is called a partial ordering; this type of relation abstracts properties of
the ≤ relation on real numbers.

Definition. A partial order on a set S is a reflexive and transitive relation R on S such that for all x, y ∈ S

1. If (x, y), (y, x) ∈ R, then x = y. (Antisymmetric)

We have already seen some partial orders in the class. In particular, the following are partial orders:

1. Usual ordering on R, Q, Z, N0.

2. The subset relation on pow(S) is a partial ordering.

2 Functions

Functions are the language of higher mathematics!

Definition. Let A and B be sets. A function f : A→ B is a relation f ⊆ A× B such that for all a ∈ A there is a
unique b ∈ B such that (a, b) ∈ f . The set A is called the source or domain of f , written dom(f) = A. The set B is
called the target or codomain of f , written cod(f) = B.

Remark. Usually we will write f(a) = b rather than (a, b) ∈ f or a f b.

Example 6. For every set A there is an identity function idA : A→ A having idA(a) = a for all a ∈ A.

Functions f and g are equal when dom(f) = dom(g), cod(f) = cod(g), and f(x) = g(x) for all x ∈ dom(f).
As relations, functions are special; functions take an input and produce a unique output for that input.
Given two compatible functions, we can get another function from them!

Definition. Functions f : A→ B and g : B → C have composition g ◦ f : A→ C : x 7→ g(f(x)).

Proposition 1. For all f : A→ B, g : B → C, and h : C → D we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof. For all x ∈ dom(f) we have the following equalities, completing the proof

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = ((h ◦ g) ◦ f)(x).

Definition. Let f : A→ B be a function. The preimage of a set S ⊆ B under f is the set f−1S = {x ∈ A|f(x) ∈ S}.
The image of a set T ⊆ A under f is the set fT = {f(x) ∈ B|x ∈ T}.
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The next several propositions are straightforward applications of the definitions presented here. The proofs are
left to you as a method of checking your understanding.

Proposition 2. Let f : A→ B be a function.

1. If S ⊆ T ⊆ A, then f(S) ⊆ f(T ).

2. If S ⊆ T ⊆ B, then f−1(S) ⊆ f−1(T ).

Proof. Exercise.

Proposition 3. Let f : A→ B be a functon.

1. For all S ⊆ A we have S ⊆ f−1(fS).

2. For all T ⊆ B we have f(f−1T ) ⊆ T .

Proof. Exercise.

Proposition 4. Let f : A→ B be a function and S, T ⊆ A. The following all hold:

1. f(S ∪ T ) = f(S) ∪ f(T )

2. f(S ∩ T ) ⊆ f(S) ∩ f(T )

3. f(S \ T ) ⊇ f(S) \ f(T )

Proof. Exercise.

Problem 4. Find an example of functions and subsets for which the above subset relations are strict.

Proposition 5. Let f : A→ B be a function and S, T ⊆ B. The following all hold:

1. f−1(S ∪ T ) = f−1(S) ∪ f−1(T )

2. f−1(S ∩ T ) = f−1(S) ∩ f−1(T )

3. f−1(S \ T ) = f−1(S) \ f−1(T )

Proof. Exercise.

Definition. Let f : A→ B be a function.

1. Function f is injective or into when for all a, a′ ∈ A we have f(a) = f(a′) implies a = a′.

2. Function f is surjective or onto when for all b ∈ B there exists an a ∈ A such that f(a) = b.

3. Function f is bijective or a one-to-one correspondence when f is both injective and surjective.

Example 7. The identity function idA : A→ A is bijective.

Problem 5. Write down examples of functions which are injective, surjective, and bijective. Can you write down a
function which is injective but not surjective? How about one which is surjective but not injective?

Problem 6. If f is injective, can you strengthen Proposition 4? What if f is surjective?

In Calculus 2 you studied some inverse functions (the Inverse Function Theorem needs them!); we continue here.

Definition. Let f : A→ B be a function.

1. A left inverse of f is a function g : B → A such that g ◦ f = idA.

2. A right inverse of f is a function g : B → A such that f ◦ g = idB .

3. An inverse of f is a function g : B → A such that g is both a left inverse of f and a right inverse of f .

Example 8. The function idA is its own inverse.

Problem 7. Find functions that have a left inverse but no right inverse and vice-versa.

The following proposition gives the relationship between invertibility and the properties above.
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Proposition 6. Let f : A→ B be a function with A 6= ∅.

1. Function f has a left inverse if and only if f is injective.

2. Function f has a right inverse if and only if f is surjective.

3. Function f has an inverse if and only if f is bijective.

Proof. Let f : A→ B be a function.
Part 1 : Supposing f has a left inverse g, then (g ◦ f)(a) = a for all a ∈ A. Thus g(f(a)) = a for all a ∈ A. If

f(a) = f(a′) for some a, a′ ∈ A, then a = g(f(a)) = g(f(a′)) = a′; hence f is injective. Supposing f is injective, fix
an element a0 ∈ A (this is why we need A 6= ∅) and define

g(x) =

{
a if x = f(a) for some a ∈ A

a0 otherwise

for all x ∈ B. If f(a) = f(a′), then a = a′ by injectivity; thus g is well-defined. Moreover (g ◦ f)(x) = g(f(x)) = x
for all x ∈ A; hence g ◦ f = idA and g is a left inverse of f .

Part 2 : Supposing f has a right inverse g, then (f ◦ g)(b) = b for all b ∈ B. Thus for all b ∈ B one has g(b) ∈ A
and f(g(b)) = b; hence f is surjective. Supposing f is surjective, we fix1 for all b ∈ B an element ab ∈ A such
that f(ab) = b. Now define g : B → A by g(b) = ab; note that this is well-defined by surjectivity of f . Moreover
(f ◦ g)(x) = f(g(x)) = f(ax) = x for all x ∈ B; hence f ◦ g = idB and g is a right inverse of f .

Part 3 : Supposing f has an inverse, f has both a left and right inverse; hence by Part 1 and Part 2, f is both
injective and surjective, and thus bijective. If f is bijective, then f is injective and surjective by definition; thus by
Part 1 and Part 2 f has a left inverse g and a right inverse g′. Now

g = g ◦ idB = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = idA ◦g′ = g′

and hence g is both a left and right invere for f .

Proposition 7. Let f : A→ B be a function.

1. If f is injective, then for all S ⊆ dom(f) we have f−1(f(S)) = S.

2. If f is surjective, then for all T ⊆ cod(f) we have f(f−1(S)) = S.

Proof. Exercise (HINT: you can use the preceeding proposition).

1This is possible by an abstract axiom of set theory (called the Axiom of Choice). Mathematicians in the past argued for a long time
over whether or not this is a good axiom because it has a lot of weird consequences. If you’d like to know more about this, email me...
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