1 Relations

Recall the definition of a relation.
Definition. Let A and B be sets. A relation $A \xrightarrow{R} B$ from A to B is a subset $R \subseteq A \times B$.
We will sometimes say R is a relation on a set S to mean a that R is a relation $S \xrightarrow{R} S$.
Here is a small example of a relation.
Example 1. We have a relation $\{1,2,3\} \xrightarrow{R}\{4,5\}$ given by $R=\{(1,4),(2,4),(1,5)\}$.
Relations are a mathematical model of relationships between the elements of various sets. The following is a very concrete example illustrating this idea.

Example 2. Let $P=\{x \mid x$ is a person $\}$. There are many meaningful relations on the set P.

- The relation $P \xrightarrow{s i s} P$ is defined by $(x, y) \in$ sis when x and y are sisters.
- The relation $P \xrightarrow{\text { mot }} P$ is defined by $(x, y) \in$ mot when x is the mother of y.
- The relation $P \xrightarrow{s t u} P$ is defined by $(x, y) \in s t u$ when x was in a class taught by y.
- The relation $P \xrightarrow{f r i} P$ is defined by $(x, y) \in f r i$ when x any y are mutually friends.

Remark. It is cumbersome to write " $(x, y) \in R$ ". We will often abbreviate this using the infix notation $x R y$ instead.
We will often depict relations using diagrams. For a relation $A \xrightarrow{R} B$, we will arrange the elements of A at the left, the elements of B at the right, and draw a line segment between two elements $a \in A$ and $b \in B$ when $a R b$. Doing so, we can depict the relation from Example 1 above in the following way:

Relations have very little structure; in particular, there are no requirements on the subset $R \subseteq A \times B$. If we add some simple conditions on our relations, they often become more meaningful.

The following notion is a mathematical abstraction of some fundamental properties of equality.
Definition. An equivalence relation on set S is a relation $R \subseteq S \times S$ such that the following hold for all $x, y, z \in S$:

1. Element $(x, x) \in R$.
(Reflexive)
2. If $(x, y) \in R$, then $(y, x) \in R$.
(Symmetric)
3. If $(x, y),(y, z) \in R$, then $(x, z) \in R$.
(Transitive)
Notice that reflexivity, symmetry, and transitivity only make sense when we have a relation $R \subseteq S \times S$.
Example 3. The following are some examples of equivalence relations:

- Equality is an equivalence relation on any given set.
- Let P be the set of all people. The relation $P \xrightarrow{B D a y} P$ defined by $x B d a y y$ when x and y have the same birthday is an equivalence relation on P.

Example 4. The following set gives a relation on the set $S=\{0,1,2,3,4\}$:

$$
\{(0,0),(0,1),(0,2),(0,3),(0,4),(1,1),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}
$$

Is this relation reflexive? Symmetric? Transitive?

Problem 1. Construct a relation which has the properties in X for each subset $X \subseteq$ \{reflexive, symmetric, transitive $\}$. Try to make your examples as small as possible in terms of number of elements of the relation R and the set S.
Problem 2. Let $F \subseteq \operatorname{pow}(S)$ for set S, and suppose $\emptyset \notin F$.

1. Is the relation $F \xrightarrow{I} F$ where $A I B$ when $A \cap B \neq \emptyset$ always an equivalence relation?
2. Is the relation $F \xrightarrow{D} F$ where $A D B$ when $A \cap B=\emptyset$ always an equivalence relation?
3. Is the relation $F \xrightarrow{R} F$ where $A R B$ when A and B have the same number of elements an equivalence relation?

Another way to visualize a relation $R \subseteq S \times T$ is via a directed graph (we'll learn more about these later). Our directed graph has a point representing each element of $S \cup T$ and an arrow pointing from s to t whenever $s R t$.

Example 5. The relation $R=\{(1,2),(2,3),(3,1),(1,1)\}$ has the following directed graph:

Problem 3. Draw the directed graph for the relation from Example 4.
Another very important type of relation is called a partial ordering; this type of relation abstracts properties of the \leq relation on real numbers.

Definition. A partial order on a set S is a reflexive and transitive relation R on S such that for all $x, y \in S$

1. If $(x, y),(y, x) \in R$, then $x=y$.
(Antisymmetric)
We have already seen some partial orders in the class. In particular, the following are partial orders:
2. Usual ordering on $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}_{0}$.
3. The subset relation on $\operatorname{pow}(S)$ is a partial ordering.

2 Functions

Functions are the language of higher mathematics!
Definition. Let A and B be sets. A function $f: A \rightarrow B$ is a relation $f \subseteq A \times B$ such that for all $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$. The set A is called the source or domain of f, written $\operatorname{dom}(f)=A$. The set B is called the target or codomain of f, written $\operatorname{cod}(f)=B$.

Remark. Usually we will write $f(a)=b$ rather than $(a, b) \in f$ or $a f b$.
Example 6. For every set A there is an identity function $\operatorname{id}_{A}: A \rightarrow A$ having $\operatorname{id}_{A}(a)=a$ for all $a \in A$.
Functions f and g are equal when $\operatorname{dom}(f)=\operatorname{dom}(g), \operatorname{cod}(f)=\operatorname{cod}(g)$, and $f(x)=g(x)$ for all $x \in \operatorname{dom}(f)$.
As relations, functions are special; functions take an input and produce a unique output for that input.
Given two compatible functions, we can get another function from them!
Definition. Functions $f: A \rightarrow B$ and $g: B \rightarrow C$ have composition $g \circ f: A \rightarrow C: x \mapsto g(f(x))$.
Proposition 1. For all $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$ we have $h \circ(g \circ f)=(h \circ g) \circ f$.
Proof. For all $x \in \operatorname{dom}(f)$ we have the following equalities, completing the proof

$$
(h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x)))=(h \circ g)(f(x))=((h \circ g) \circ f)(x)
$$

Definition. Let $f: A \rightarrow B$ be a function. The preimage of a set $S \subseteq B$ under f is the set $f^{-1} S=\{x \in A \mid f(x) \in S\}$. The image of a set $T \subseteq A$ under f is the set $f T=\{f(x) \in B \mid x \in T\}$.

The next several propositions are straightforward applications of the definitions presented here. The proofs are left to you as a method of checking your understanding.

Proposition 2. Let $f: A \rightarrow B$ be a function.

1. If $S \subseteq T \subseteq A$, then $f(S) \subseteq f(T)$.
2. If $S \subseteq T \subseteq B$, then $f^{-1}(S) \subseteq f^{-1}(T)$.

Proof. Exercise.

Proposition 3. Let $f: A \rightarrow B$ be a functon.

1. For all $S \subseteq A$ we have $S \subseteq f^{-1}(f S)$.
2. For all $T \subseteq B$ we have $f\left(f^{-1} T\right) \subseteq T$.

Proof. Exercise.
Proposition 4. Let $f: A \rightarrow B$ be a function and $S, T \subseteq A$. The following all hold:

1. $f(S \cup T)=f(S) \cup f(T)$
2. $f(S \cap T) \subseteq f(S) \cap f(T)$
3. $f(S \backslash T) \supseteq f(S) \backslash f(T)$

Proof. Exercise.
Problem 4. Find an example of functions and subsets for which the above subset relations are strict.
Proposition 5. Let $f: A \rightarrow B$ be a function and $S, T \subseteq B$. The following all hold:

1. $f^{-1}(S \cup T)=f^{-1}(S) \cup f^{-1}(T)$
2. $f^{-1}(S \cap T)=f^{-1}(S) \cap f^{-1}(T)$
3. $f^{-1}(S \backslash T)=f^{-1}(S) \backslash f^{-1}(T)$

Proof. Exercise.

Definition. Let $f: A \rightarrow B$ be a function.

1. Function f is injective or into when for all $a, a^{\prime} \in A$ we have $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$.
2. Function f is surjective or onto when for all $b \in B$ there exists an $a \in A$ such that $f(a)=b$.
3. Function f is bijective or a one-to-one correspondence when f is both injective and surjective.

Example 7. The identity function $\operatorname{id}_{A}: A \rightarrow A$ is bijective.
Problem 5. Write down examples of functions which are injective, surjective, and bijective. Can you write down a function which is injective but not surjective? How about one which is surjective but not injective?
Problem 6. If f is injective, can you strengthen Proposition 4? What if f is surjective?
In Calculus 2 you studied some inverse functions (the Inverse Function Theorem needs them!); we continue here.
Definition. Let $f: A \rightarrow B$ be a function.

1. A left inverse of f is a function $g: B \rightarrow A$ such that $g \circ f=\mathrm{id}_{A}$.
2. A right inverse of f is a function $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$.
3. An inverse of f is a function $g: B \rightarrow A$ such that g is both a left inverse of f and a right inverse of f.

Example 8. The function id_{A} is its own inverse.
Problem 7. Find functions that have a left inverse but no right inverse and vice-versa.
The following proposition gives the relationship between invertibility and the properties above.

Proposition 6. Let $f: A \rightarrow B$ be a function with $A \neq \emptyset$.

1. Function f has a left inverse if and only if f is injective.
2. Function f has a right inverse if and only if f is surjective.
3. Function f has an inverse if and only if f is bijective.

Proof. Let $f: A \rightarrow B$ be a function.
Part 1: Supposing f has a left inverse g, then $(g \circ f)(a)=a$ for all $a \in A$. Thus $g(f(a))=a$ for all $a \in A$. If $f(a)=f\left(a^{\prime}\right)$ for some $a, a^{\prime} \in A$, then $a=g(f(a))=g\left(f\left(a^{\prime}\right)\right)=a^{\prime}$; hence f is injective. Supposing f is injective, fix an element $a_{0} \in A$ (this is why we need $A \neq \emptyset$) and define

$$
g(x)= \begin{cases}a & \text { if } x=f(a) \text { for some } a \in A \\ a_{0} & \text { otherwise }\end{cases}
$$

for all $x \in B$. If $f(a)=f\left(a^{\prime}\right)$, then $a=a^{\prime}$ by injectivity; thus g is well-defined. Moreover $(g \circ f)(x)=g(f(x))=x$ for all $x \in A$; hence $g \circ f=\operatorname{id}_{A}$ and g is a left inverse of f.

Part 2: Supposing f has a right inverse g, then $(f \circ g)(b)=b$ for all $b \in B$. Thus for all $b \in B$ one has $g(b) \in A$ and $f(g(b))=b$; hence f is surjective. Supposing f is surjective, we fix ${ }^{1}$ for all $b \in B$ an element $a_{b} \in A$ such that $f\left(a_{b}\right)=b$. Now define $g: B \rightarrow A$ by $g(b)=a_{b}$; note that this is well-defined by surjectivity of f. Moreover $(f \circ g)(x)=f(g(x))=f\left(a_{x}\right)=x$ for all $x \in B$; hence $f \circ g=\operatorname{id}_{B}$ and g is a right inverse of f.

Part 3: Supposing f has an inverse, f has both a left and right inverse; hence by Part 1 and Part 2 , f is both injective and surjective, and thus bijective. If f is bijective, then f is injective and surjective by definition; thus by Part 1 and Part $2 f$ has a left inverse g and a right inverse g^{\prime}. Now

$$
g=g \circ \operatorname{id}_{B}=g \circ\left(f \circ g^{\prime}\right)=(g \circ f) \circ g^{\prime}=\operatorname{id}_{A} \circ g^{\prime}=g^{\prime}
$$

and hence g is both a left and right invere for f.
Proposition 7. Let $f: A \rightarrow B$ be a function.

1. If f is injective, then for all $S \subseteq \operatorname{dom}(f)$ we have $f^{-1}(f(S))=S$.
2. If f is surjective, then for all $T \subseteq \operatorname{cod}(f)$ we have $f\left(f^{-1}(S)\right)=S$.

Proof. Exercise (HINT: you can use the preceeding proposition).

[^0]
[^0]: ${ }^{1}$ This is possible by an abstract axiom of set theory (called the Axiom of Choice). Mathematicians in the past argued for a long time over whether or not this is a good axiom because it has a lot of weird consequences. If you'd like to know more about this, email me...

