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All graphs in this document are assumed to be simple and have finitely many vertices.

Basic Definitions and Examples

Recall that for all graphs G and all S ⊆ V (G), the neighborhood of S in G is

NG(S) := {v ∈ V (G) : vs ∈ E(G) for some s ∈ S} .

Definition. Let G be a simple graph. A (partial) matching on G is a set M ⊆ E(G) such that for all e, e′ ∈M we
have e ∩ e′ 6= ∅ implies e = e′.

Intuitively, a partial matching in a graph is a set of edges which do not share any endpoints.

Example. The empty set M = ∅ is a partial matching on every graph.

The previous example shows that every graph has a partial matching.

Definition. Let G be a simple graph. A perfect matching on G is a partial matching M ⊆ E(G) such that for all
v ∈ V (G) there is an e ∈M such that v is an endpoint of e.

Example. The red edges (respectively blue edges) in the graph G below form a perfect matching.

Problem. Let n ∈ Z>0 be an even number.

1. How many perfect matchings does the complete graph Kn have?

2. How many perfect matchings does the cycle graph Cn have?

3. How many perfect matchings does the path graph Pn have?

Problem. How many perfect matchings does the Petersen graph have?1

The following is a very natural observation.

Proposition. If G is a simple graph with a perfect matching, then G has an even number of vertices.

Proof. Homework.

Hall’s Marriage Theorem

How do we know when a graph G has a perfect matching? In general, this is a rather difficult question. For certain
special types of graphs, this question can be answered more easily than others. Recall the following definition.

Definition. A graph G is bipartite when we can write V (G) = L ∪R for disjoint sets L,R ⊆ V (G) such that every
edge e ∈ E(G) has one end in L and the other end in R. We call L ∪R a bipartiton of G.

Example. Let m,n ∈ N0. The complete bipartite graph Km,n is given by

V (Km,n) := {1} × [m] ∪ {2} × [n] and E(Km,n) := {{(1, i), (2, j)} : i ∈ [m] and j ∈ [n]} .

Problem. How many perfect matchings does the complete bipartite graph Kn,n have?

For the class of bipartite graphs we can get a complete answer to the question. We will say that a matching M
covers a set S ⊆ V (G) when every s ∈ S is the endpoint of some edge in M .

Proposition (Hall’s Marriage Theorem). Let G be a bipartite graph on bipartition V (G) = L∪R. There is a partial
matching in G covering L if and only if #S ≤ #NG(S) holds for all S ⊆ L.

1HINT: Use cases and the symmetry of the Petersen graph.
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Proof. Let G be a bipartite graph on bipartiton V (G) = L ∪R.
(⇒): Suppose G has a partial matching M covering L, and let S ⊆ L be arbitrary. Because M covers L, for

all s ∈ S there is a unique ts ∈ V (G) such that sts ∈ M . Moreover, ts = ts′ implies s = s′ because M is a partial
matching; thus #S = # {ts : s ∈ S}. Moreover {ts : s ∈ S} ⊆ NG(S) by definition; hence #S ≤ #NG(S) as desired.

(⇐): Assume #S ≤ #NG(S) holds for all S ⊆ L. We proceed by strong induction on n = #L.
Base Cases: If #L = 0, then M = ∅ is a partial matching covering L = ∅. If #L = 1, then L = {v} for some

v ∈ V (G); moreover #NG(L) ≥ 1 yields an element u ∈ NG(v), so M = {uv} is a partial matching covering L.
Inductive Step: Suppose the result holds for all graphs with fewer than n vertices in L. Either #S < #NG(S)

for all ∅ ( S ( L or there is a subset ∅ ( S ( L with #S = #NG(S).
Case 1 : If #S < #NG(S) for all ∅ ( S ( L, then choose any v ∈ L and note that 1 = #{v} ≤ NG(v) allows us to

choose some u ∈ NG(v); define a new graph G′ with V (G′) := V (G)\{u, v} and E(G′) = {e ∈ E(G) : u, v /∈ e}. Note
that G′ is bipartite with bipartition L′ := L\{v} and R′ := R\{u}. Now for all S ⊆ L′, we have NG′(S) = NG(S)\{u};
thus #S < #NG(S) implies #S ≤ #NG(S)− 1 ≤ #(NG(S) \ {u}) = #NG′(S). Hence by induction G′ has a perfect
matching M ′; letting M := M ′ ∪ {uv} we have that M is a perfect matching on G.

Case 2 : If #X = #NG(X) for some ∅ ( X ( L, we define two new graphs H and K by

V (H) = X ∪NG(X) E(H) = {uv ∈ E(G) : u, v ∈ X ∪NG(X)}
V (K) = V (G) \ (X ∪NG(X)) E(K) = {uv ∈ E(G) : u, v /∈ X ∪NG(X)} .

Note that V (H) = X ∪NG(X) and V (K) = (L \X) ∪ (R \NG(X)), and both H and K are bipartite because G is
bipartite on L ∪ R. Moreover #X < n and #(L \X) < n. For all S ⊆ V (H) we have #NH(S) = #NG(S) ≥ #S
as NH(S) = NG(S); thus H has a perfect matching MH by the inductive hypothesis. Assume to the contrary
#S > #NK(S) for some S ⊆ V (K); now NG(S ∪X) = NG(S) ∪NG(X) = NK(S) ∪NG(X), so we obtain

#(S ∪X) = #S + #X > #NK(S) + #X = #NK(S) + #NG(X) = #NG(S ∪ S),

which is absurd by our assumption on G. Hence #S ≤ #NK(S) for all S ⊆ V (K) yields that K has a perfect
matching MK by the inductive hypothesis. Hence M := MH ∪MK is a perfect matching on G.

We conclude that the original statement is true!

The following yields a complete characterization of bipartite graphs with a perfect matching.

Corollary. A simple bipartite graph G has a perfect matching if and only if there is a bipartition V (G) = L∪R with
#L = #R and #S ≤ #NG(S) for all S ⊆ L.

Proof. Exercise!

Hall’s Marriage Theorem is very useful for showing that a bipartite graph G does not have a perfect matching.

Example. Does the following bipartite graph have a perfect matching?

G =

Solution: Graph G has bipartition A tB with #A = 32 and #B = 30; thus G does not admit a matching.

At the moment, we can only observe perfect matchings.

Example. Does the following graph have a perfect matching?

G =
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Solution: Consider path P = (a1, b2, a4, b3, a2, b4, a3, b1) in G and the corresponding matching MP :

a1 a2 a3 a4

b1 b2 b3 b4

Path P

Matching M

One observes that M is a perfect matching in G, as desired.

Algorithms to Compute Perfect Matchings in Bipartite Graphs

Hall’s Marriage Theorem is a complete characterization of the bipartite graphs which admit perfect matchings.
However Hall’s Marriage Theorem is not practical for deciding whether a bipartite graph has a perfect matching;
it is useful to verify that a bipartite graph does not have a perfect matching–verifying #S > #NG(S) (and thus
showing no perfect matching exists) is straightforward. Using the condition to verify that a graph has a perfect
matching requires checking 2#L − 1 separate inequalities (one for each nonempty subset of L).

Our next goal is to describe an algorithm which either produces a perfect matching in G or produces an example
of a set S ⊆ L with #S > #NG(S). This is the best type of algorithm we can hope for; it both answers the question
“does G have a perfect matching?” and produces a certificate which can be used to quickly verify the answer.

Let G be a simple graph with a partial matching M . An augmenting path is a path P which alternates edges in
M and edges not in M and so that both endpoints of P are not covered by M .

Algorithm (Augmenting Paths). Let G be a bipartite graph with bipartition V (G) = L tR and let M0 = ∅.

1. Having a partial matching Mi, check if Mi covers L.

(a) If Mi covers L, output Mi and stop.

(b) If Mi does not cover L, choose an unmatched vertex vi ∈ L.

i. If there is an augmenting path Pi from vi to an unmatched vertex, define Mi+1 := Mi4E(Pi).

ii. If there is no augmenting path from vi to another unmatched vertex, choose a maximal path Q from
vi which alternates edges in Mi and edges not in Mi. Output the pair (L∩V (Q), V (Q) \L) and stop.

(c) Increment i and return to the beginning of the algorithm.

Motivated readers are encouraged to try their hand at the following project (and to think about how fast this
algorithm is by comparison to the näıve one described before stating the algorithm).

Project. 2 Implement the Augmenting Paths Algorithm in your favorite programming language.

The following proposition (and its corollary) show that the Augmenting Paths Algorithm accomplishes our goal;
the algorithm always outputs an object which can be quickly checked to decide whether or not the bipartite graph
G has a partial matching covering L.

Proposition. Consider the Augmenting Paths Algorithm (APA) on a bipartite graph G with bipartition L ∪R.

1. The APA terminates after finitely many steps.

2. If a set M is the output of the APA, then M is a partial matching covering L in G.

3. If a pair (S, T ) is the output of the APA, then S ⊆ L has NG(S) = T and #S = #T + 1.

The proof is not hard, but does take time; you are encouraged to write a proof on your own.

Corollary. A bipartite graph G has a partial matching covering L if and only if the APA returns one.

2This is not required, but I would be quite impressed with your initiative if you choose to do so.
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We will now illustrate the Augmenting Paths Algorithm with an example.

Example. Does the following bipartite graph have a perfect matching?

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

G =

Solution: First we greedily choose the partial matchingM0 = {a1b2, a2b3, a3b4, a4b5}; note thatM0 is maximal
because NG{a5, a6} ⊆ {b2, b3, b4, b5}. We have U0 = {a5, a6, b1, b6} for this matching.

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Now we can find an augmenting path P0 = (a5, b2, a1, b3, a2, b6) in (G,M0).

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Now we obtain the new partial matching M1 =M04E(P0) with unmatched vertices U1 = {a6, b1}.

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Now note that any augmenting paths must start at b1 and end at a6. But the maximal alternating path starting
at b1 is uniquely determined to be P = (b1, a2, b6, a4, b5, a1, b3), and this path also ends in B.

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Now for this path, notice that we have the following:

#{b1, b3, b5, b6} = 4 > 3 = #{a1, a2, a4} = #NG{b1, b3, b5, b6}

Hence G does not have a perfect matching by the Marriage Theorem.
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