Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Prove that the graph $K_{m, n}$ has $m n$ edges.

Solution: Recall that $V\left(K_{m, n}\right)=(\{1\} \times[m]) \cup(\{2\} \times[n])$ and $E\left(K_{m, n}\right)=\{\{(1, i),(2, j)\}: i \in[m]$ and $j \in[n]\}$. Define a function $f:[m] \times[n] \rightarrow E\left(K_{m, n}\right):(i, j) \mapsto\{(1, i),(2, j)\}$; it is easy to show that f is bijective. Hence $\# E\left(K_{m, n}\right)=m n$ as desired.
2. What is the smallest number of edges that must be removed from K_{5} to make a bipartite graph?

Solution: If $G \leq K_{5}$ is bipartite on vertex bipartition $V(G)=L \cup R$, then $\# L+\# R=5$; moreover the graph G is complete bipartite if G maximizes the number of edges. Up to isomorphism $G=K_{0,5}, G=K_{1,4}$, or $G=K_{2,3}$. Among these $K_{2,3}$ has the most edges; as K_{5} has 10 edges, the desired quantity is $10-6=4$.
3. For each of the graphs G below, compute the chromatic number $\chi(G)$. Give a complete proof.
(a)

(b)

4. Prove that every finite simple graph G has at least $\binom{\chi(G)}{2}$ edges (where $\chi(G)$ is the chromatic number of G).

Solution: Let G be a finite simple graph, and let c be a coloring of G by $\chi(G)$ colors. Assume to the contrary that there are two colors a and b so that if $u, v \in V(G)$ have $c(u)=a$ and $c(v)=b$, then $u v \notin E(G)$. Now build a new coloring c^{\prime} by

$$
c^{\prime}(x)= \begin{cases}c(x) & \text { if } c(x) \neq b \\ a & \text { if } c(x)=b\end{cases}
$$

By our assumption c^{\prime} is a proper coloring of G using 1 color fewer; but c used $\chi(G)$ colors, which implies the absurdity $\chi(G)<\chi(G)$. Hence for each pair $\{a, b\}$ of colors in a $\chi(G)$-coloring of G there is an edge $e \in E(G)$ connecting an a-colored vertex to a b-colored vertex. Hence $\# E(G) \geq\binom{\chi(G)}{2}$ as desired.
5. Let G be a graph and let \sim be the relation on $V(G)$ defined by $u \sim v$ when there is a walk in G from u to v. Prove that \sim is an equivalence relation.

Solution: Let G be an arbitrary graph and consider \sim defined as above. Let $u, v, w \in V(G)$ be arbitrary. Reflexive: Because $W=(u)$ is a walk starting and ending at u, we have that $u \sim u$.
Symmetric: Assume $u \sim v$. Thus there is a walk $W=\left(w_{0}, w_{1}, \cdots, w_{k}\right)$ in G with $w_{0}=u$ and $w_{n}=v$. Reverse this walk to obtain walk $\bar{W}=\left(w_{k}, w_{k-1}, \cdots, w_{0}\right)$ in G starting at v and ending at u. Hence $v \sim u$. Transitive: Assume $u \sim v$ and $v \sim w$. Thus there are walks $A=\left(a_{0}, a_{1}, \cdots, a_{k}\right)$ and $B=\left(b_{0}, b_{1}, \cdots, b_{m}\right)$ in G with $a_{0}=u, a_{k}=v, b_{0}=v$, and $b_{m}=w$. Now concatenating these paths we obtain a new path $A B=\left(u=a_{0}, a_{1}, \cdots, a_{k}=b_{0}, b_{1}, \cdots, b_{m}=w\right)$ starting at u and ending at w.

