Instructions: Complete each of the following on separate, stapled sheets of paper.

1. Let $f: A \rightarrow B$ be a function. Define a relation R on the set A by x when $f(x)=f(y)$. Prove that R is an equivalence relation.
2. Let \sim be an equivalence relation on set S. Recall that the equivalence class of $s \in S$ is the set $[s]=\{t \in S: s \sim t\}$. Prove that $\left[s_{1}\right]=\left[s_{2}\right]$ if and only if $s_{1} \sim s_{2}$.
3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Prove the following.
(a) If both f and g are injective, then $g \circ f$ is injective.
(b) If $g \circ f$ is surjective, then g is surjective.
4. Prove each of the following:
(a) $\sum_{k=1}^{n} 1=n$ for all $n \in \mathbb{Z}_{>0}$.
(b) $\sum_{k=1}^{n} k(k+1)=\frac{n(n+1)(n+2)}{3}$ for all $n \in \mathbb{Z}_{>0}$.
(c) $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \in \mathbb{Z}_{>0}$.
(d) $\sum_{k=0}^{n} 2^{k}=2^{n+1}-1$ for all $n \in \mathbb{N}_{0}$.
5. Let F_{k} denote the $k^{t h}$ Fibonacci Number. Prove that $F_{4 n}$ is divisible by 3 for all integers $n \geq 0$.
6. Let $a, b, c \in \mathbb{Z}$ be arbitrary. Prove the following.
(a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$, then $a \mid(b s+c t)$ for all $s, t \in \mathbb{Z}$.
7. We proved the following in class:

Proposition (Quotient-Remainder Theorem for \mathbb{N}_{0}). Let $n, d \in \mathbb{N}_{0}$ with $d \neq 0$. There exist unique $q, r \in \mathbb{N}_{0}$ such that $n=d q+r$ and $0 \leq r<d$.

Finish the proof of the Quotient-Remainder Theorem for \mathbb{Z} using the proposition above. ${ }^{1}$ In other words, prove that for all $n, d \in \mathbb{Z}$ with $d \neq 0$ there exist unique $q, r \in \mathbb{Z}$ such that $n=d q+r$ and $0 \leq r<|d|$.
8. Make Cayley tables for the operations indicated below.
(a) addition and multiplication modulo 7
(b) addition and multiplication modulo 8
9. Let $m, n \in \mathbb{Z}$ with $m \neq 0$. Prove that if $n=m q+r$ for some $q, r \in \mathbb{Z}$, then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m, r)$.
10. Use Euclid's Extended Algorithm to write each of the following as linear combinations of their arguments.
(a) $\operatorname{gcd}(87,2500)$
(b) $\operatorname{gcd}(85,105)$

[^0]
[^0]: ${ }^{1}$ This problem is optional, but it's a good idea to do it anyway.

