Homework 2

Instructions: Complete each of the following on separate, stapled sheets of paper.

- 1. Let $f : A \to B$ be a function. Define a relation R on the set A by x R y when f(x) = f(y). Prove that R is an equivalence relation.
- 2. Let ~ be an equivalence relation on set S. Recall that the equivalence class of $s \in S$ is the set $[s] = \{t \in S : s \sim t\}$. Prove that $[s_1] = [s_2]$ if and only if $s_1 \sim s_2$.
- 3. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following.
 - (a) If both f and g are injective, then $g \circ f$ is injective.
 - (b) If $g \circ f$ is surjective, then g is surjective.
- 4. Prove each of the following:

(a)
$$\sum_{k=1}^{n} 1 = n$$
 for all $n \in \mathbb{Z}_{>0}$.
(b) $\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$ for all $n \in \mathbb{Z}_{>0}$.
(c) $\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \in \mathbb{Z}_{>0}$.
(d) $\sum_{k=0}^{n} 2^{k} = 2^{n+1} - 1$ for all $n \in \mathbb{N}_{0}$.

- 5. Let F_k denote the k^{th} Fibonacci Number. Prove that F_{4n} is divisible by 3 for all integers $n \ge 0$.
- 6. Let $a, b, c \in \mathbb{Z}$ be arbitrary. Prove the following.
 - (a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
 - (b) If $a \mid b$ and $a \mid c$, then $a \mid (bs + ct)$ for all $s, t \in \mathbb{Z}$.
- 7. We proved the following in class:

Proposition (Quotient-Remainder Theorem for \mathbb{N}_0). Let $n, d \in \mathbb{N}_0$ with $d \neq 0$. There exist unique $q, r \in \mathbb{N}_0$ such that n = dq + r and $0 \leq r < d$.

Finish the proof of the Quotient-Remainder Theorem for \mathbb{Z} using the proposition above.¹ In other words, prove that for all $n, d \in \mathbb{Z}$ with $d \neq 0$ there exist unique $q, r \in \mathbb{Z}$ such that n = dq + r and $0 \leq r < |d|$.

- 8. Make Cayley tables for the operations indicated below.
 - (a) addition and multiplication modulo 7
 - (b) addition and multiplication modulo 8
- 9. Let $m, n \in \mathbb{Z}$ with $m \neq 0$. Prove that if n = mq + r for some $q, r \in \mathbb{Z}$, then gcd(m, n) = gcd(m, r).
- 10. Use Euclid's Extended Algorithm to write each of the following as linear combinations of their arguments.
 - (a) gcd(87, 2500)
 - (b) gcd(85, 105)

¹This problem is optional, but it's a good idea to do it anyway.