The questions below are intended for practice only. It is your responsibility to study all material covered in this course, whether represented here or not.

- 1. Be able to state and use any named propositions and definitions.
- 2. Consider the propositional statement $((P \to Q) \leftrightarrow R) \land (R \lor (Q \oplus (\neg P))).$
 - (a) Build a truth table for the statement.
 - (b) Write the statement in Disjunctive Normal Form.
 - (c) Write the statement in Conjunctive Normal Form.
- 3. Let $a, b, c, d \in \mathbb{Z}$ and let $m \in \mathbb{Z}_{>0}$.
 - (a) Prove that if $a \mid c$ and $b \mid d$, then $ab \mid cd$.
 - (b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid bs + ct$ for all $s, t \in \mathbb{Z}$.
- 4. This question concerns equivalence relations.
 - (a) Let $f: S \to T$ be an arbitrary function. Is $R = \{(a, b) \in S \times S : f(a) = f(b)\}$ an equivalence relation on S? Prove or disprove.
 - (b) Is $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 = 0\}$ an equivalence relation? Prove or disprove.
 - (c) Is $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 = y\}$ an equivalence relation? Prove or disprove.
 - (d) Is $R = \{(x, y) : xy \ge 0\}$ an equivalence relation on $\mathbb{Z} \setminus \{0\}$? Prove or disprove.
- 5. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Prove that if $g \circ f$ is injective, then f is injective.
 - (b) Prove that if $g \circ f$ is surjective, then g is surjective.
 - (c) Give an example of functions f and g as above with $g \circ f$ a bijection, but neither f nor g is a bijection (a clear picture is an acceptable answer).

6. This question concerns induction.

(a) Prove
$$\sum_{\substack{k=1\\n}}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 for all $n \ge 1$.

- (b) Prove $\sum_{k=0} 2F_{3k+3} = F_{3n+5} 1$ for all $n \ge 0$ where F_k is the k^{th} Fibonacci number.
- (c) Prove $\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}$ for all $n \ge 1$ where F_k is the k^{th} Fibonacci number.
- 7. Let A_0, A_1, \dots, A_n be sets and $f_i: A_{i-1} \to A_i$ a bijection for all $1 \le i \le n$. Prove that $f_n \circ f_{n-1} \circ \dots \circ f_1$ is also bijective.
- 8. Solve $250x \equiv 93 \pmod{927}$ for an integer x with $0 \le x \le 927$.
- 9. This question concerns the RSA Cryptosystem. Let p = 13, q = 17, and e = 19.
 - (a) Encrypt the message m = 15.
 - (b) Decrypt the message $\hat{m} = 7$.