The questions below are intended for practice only. It is your responsibility to study all material covered in this course, whether represented here or not.

1. Be able to state and use any named propositions and definitions.
2. Consider the propositional statement $((P \rightarrow Q) \leftrightarrow R) \wedge(R \vee(Q \oplus(\neg P)))$.
(a) Build a truth table for the statement.
(b) Write the statement in Disjunctive Normal Form.
(c) Write the statement in Conjunctive Normal Form.
3. Let $a, b, c, d \in \mathbb{Z}$ and let $m \in \mathbb{Z}_{>0}$.
(a) Prove that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.
(b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid b s+c t$ for all $s, t \in \mathbb{Z}$.
4. This question concerns equivalence relations.
(a) Let $f: S \rightarrow T$ be an arbitrary function. Is $R=\{(a, b) \in S \times S: f(a)=f(b)\}$ an equivalence relation on S ? Prove or disprove.
(b) Is $R=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^{2}+y^{2}=0\right\}$ an equivalence relation? Prove or disprove.
(c) Is $R=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^{2}=y\right\}$ an equivalence relation? Prove or disprove.
(d) Is $R=\{(x, y): x y \geq 0\}$ an equivalence relation on $\mathbb{Z} \backslash\{0\}$? Prove or disprove.
5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Prove that if $g \circ f$ is injective, then f is injective.
(b) Prove that if $g \circ f$ is surjective, then g is surjective.
(c) Give an example of functions f and g as above with $g \circ f$ a bijection, but neither f nor g is a bijection (a clear picture is an acceptable answer).
6. This question concerns induction.
(a) Prove $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \geq 1$.
(b) Prove $\sum_{k=0}^{n} 2 F_{3 k+3}=F_{3 n+5}-1$ for all $n \geq 0$ where F_{k} is the $k^{t h}$ Fibonacci number.
(c) Prove $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$ for all $n \geq 1$ where F_{k} is the $k^{\text {th }}$ Fibonacci number.
7. Let $A_{0}, A_{1}, \cdots, A_{n}$ be sets and $f_{i}: A_{i-1} \rightarrow A_{i}$ a bijection for all $1 \leq i \leq n$. Prove that $f_{n} \circ f_{n-1} \circ \cdots \circ f_{1}$ is also bijective.
8. Solve $250 x \equiv 93(\bmod 927)$ for an integer x with $0 \leq x \leq 927$.
9. This question concerns the RSA Cryptosystem. Let $p=13, q=17$, and $e=19$.
(a) Encrypt the message $m=15$.
(b) Decrypt the message $\widehat{m}=7$.
