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We build a mathematical model for algorithms using the notion of a state machine.

Definitions and Examples
In this section we give basic definitions and illustrate our definitions on a finite state machine.
Definition. A state machine M is a triple M = (S, T, sg) where

1. The states of M are the elements of the set S.

2. The transition relation of M is the set T C S x S.

3. The initial state of M is the state sqg € S.

Note that mathematically speaking a state machine is a pointed directed graph. We will often write s — ¢ to
denote that (s,t) € T' is a possible transition of M.

Example. The triple M = (5,T, so) is a state machine where
1. §={1,2,3,4,5}
2. T={(1,2),(2,3),(3,4),(4,5),(5,5)}
3. so=1
We call this machine the “four-step overflow machine” below.
It is often be useful to draw pictures of state machines. We use the following conventions to make our pictures.
e States are represented by labeled points.
e Transitions are represented by arrows pointing from the old state to the new state.
e The initial state is circled.
Using these conventions, the four-step overflow machine from the previous example is pictured below.
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Definition. An evaluation of a state machine M = (S, T, so) is a sequence (sg, S1,- -+ ,S,) Where each s; € S is a
state, sg is the initial state, and s;_1 — s; for all ¢ € [n]. The length of such an evaluation is n.

We use sp — 81 — -+ — 8, to denote the evaluation (sg, $1,- -, S,). The only evaluation of length 0 is (sg).

Example. In the four-step overflow machine, the evaluations are simple; there is exactly one evaluation for each
length n. The evaluations of length 0, 1, 2, 3, and 4 are (1), (1,2), (1,2,3), and (1,2, 3,4) respectively. For length
n > 4, the unique evaluation of length n is (1,2,3,4,5,5, -+ ,5), with n — 3 repeats of the state 5.

The set of all states which can be reached from our initial state is of fundamental importance in our study of
algorithms; this set describes the possible “middle steps” an algorithm might pass through before termination.

Definition. A state ¢t in M = (S, T, sg) is reachable when there is an evaluation sy — s1 — -+- — s, with ¢t = s,,.
Example. Every state is reachable in the four-step overflow machine.

Fundamentally, we want algorithms which terminate by outputting a state with a desired property.
Definition. A terminal state or terminus of M = (S, T, sg) is a reachable state ¢t € S so that (¢,s) ¢ T for all s € S.
Example. The four-step overflow machine has no terminal states.

Because we think of terminal states as outputs, it will later be useful to know that a state machine has an
terminus; showing a terminus exists can be difficult. One method (described later) uses functions defined on states.

Definition. A derived variable on a state machine M = (S, T, s¢) is a function f: S — R.
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Note that there is no restriction on derived variables. On the other hand, derived variables are often only useful
if they have some nice properties with respect to the transition relation on M.

Definition. A derived variable f : S — R on state machine M = (5,7, s¢) is
1. strictly increasing if f(s) < f(t) for all s,t € S with s — ¢.
2. weakly increasing if f(s) < f(t) for all s,t € S with s — ¢.
3. strictly decreasing if f(s) > f(t) for all s,t € S with s — ¢.
4. weakly decreasing if f(s) > f(¢t) for all s,¢t € S with s — ¢.
Example. The derived variable f : S — R

When studying state machines, it is often useful to consider predicates defined on the states themselves; doing so
can (later in the document) help prove an algorithm computes what we want (i.e. for “proof of correctness”).

Definition. A preserved invariant of a state machine M = (S, T, so) is a predicate formula P with domain S such
that if P(s) is true and s — ¢ is a possible transition, then P(t) is true.

State machines often have many preserved invariants.

Example. For the four-step overflow machine, the formulas P(s) : s =5 and Q(s) : s > 3 are preserved invariants.

General Remarks

We now make a few general remarks on the structures of state machines.

Modeling Algorithms with State Machines

We think of algorithms using state machines as follows. The states are a set of objects which the algorithm manip-
ulates. We include a transition s — ¢ whenever the algorithm can change s to t via its operation. The initial state
is the desired input to the algorithm. Finally, the terminal states are the states which lead us to output; the output
is a function of the set of terminal states. In this scheme, the set of meaningful inputs (i.e. states which can be used
as initial states) may be a strict subset of the full set of states. We will see an example later.

The Halting Problem

The “best” algorithms take an input and yield a uniquely determined output. In the context of state machines,
this is to say that the “best” algorithms actually give a pair (S,T) of states and transitions with a function « :
init(S,T) — term(S, T) so that init(S,T) is the set of meaningful inputs, term(S, T) is the set of states ¢ which have
(t,s) ¢ T for all s € S, and a(sg) is the only terminus for the state machine (S, T, s¢).

One naturally wonders the following; given an input sp for an algorithm modeled by (5,7, s¢), can we ensure
that the state machine has a terminus? Even if it has a terminus, can we ensure that the machine must reach a
terminus in finitely many steps? In other words, can we guarantee that for every meaningful input sq, all evaluations
of M = (S, T, sp) are of finite length?

One possible failure can arise from the existence of an infinite evaluation without any repeats.

Example. The state machine M = (S, T, sg) with states S = Ny, transitions T = {n — (n + 1) : n € Np}, and any
initial state sy € Ny has an infinite evaluation!
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Another possible failure that can arise is the existence of infinite loops; the four-step overflow machine has an
infinite loop (in fact, any machine with any transition (s, s) has an infinite loop). Another failure is given as follows.

Example. The state machine M = (5, T, sg) with states S = {1, 2, 3}, transitions T' = {(1, 2), (2, 3), (3,1)}, and any
initial state sp € S has an infinite loop (draw a picture to see the loop)!

The existence of these “failures” is related to the halting problem; given a state machine M = (S, T, s¢), can we
guarantee that there is a terminus, or is there an infinite evaluation? In fact, one can prove (relatively easily, in fact)
that there is no algorithm to answer this question in all cases!
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Preserved Invariants
The following is a useful tool when working with state machines.

Proposition (Preserved Invariant Lemma). Let M = (S,T,s¢) be a state machine with preserved invariant P. If
P(sg) is true, then P(s) is true for all reachable states of M.

Sketch. Induct on the length of an evaluation. O

Notice that this proposition is essentially a jazzed-up version of induction! In fact, induction is a special case of
this result where we work on the following state machine.

0 1

Examples of State Machines

This section will provide several examples of state machines. Proofs are left to the reader.

Remainders Machine

Let S =7Z X Z~( and let T be given by the following for all (n,d) € S.

(n,d) — (n—d,d) ifn>d
’ (n+d,d) ifn<0

Then for all sg € S there is a unique terminal state in M (sg) = (S, T, sp); in particular the unique terminal state of
M(n,d) is (rem(n, d), d) where rem(n, d) is the remainder of n under division by d. Hence this machine describes an
algorithm for computing remainders under integer division.

Division Algorithm Machine
Let S =7Z X Z X Z~q and let T be given by the following for all (r,q,d) € S.

(n,d) — {(n—d,q—l—l,d) %fn >d

(n+d,g—1,d) ifn<0
For all sg € S there is a unique terminal state in M(sg) = (5,7, sg). Moreover, for initial states of the form
s0 = (n,0,d) the unique terminal state has the form (rem(n,d), quot(n,d),d) where quot(n,d) is the quotient of n
under division by d. This is easy to verify using the derived variable f(x,y, z) =  +yz and the Quotient-Remainder
Theorem. Hence this machine describes an algorithm to compute the quotient and remainder under integer division.

Euclidean Algorithm Machine
Let S =7 x Z and let T be the set of transitions described below for all (m,n) € S.

(Im], |n]) if either m <0 orn <0
(m,n) =< (n,m) ifn<m

(rem(n,m),m) if0<m<n

For all (m,n) € S with (m,n) # (0,0), there is a unique terminal state of the form (0, d); this can be shown using
the derived variable f(z,y) = x, which is strictly decreasing on transitions whenever x,y > 0. On the other hand,
P(z,y) : ged(z,y)| ged(m, n) and Q(x,y) : ged(m, n)|ged(z, y) are preserved invariants of the machine M (m,n) for
all (0,0) # (m,n) € S. Hence by the Preserved Invariant Lemma (noting trivially that P(m,n) and Q(m,n) are
both true) we have that the unique terminal state of M (m,n) is precisely (0, ged(m,n)).

The state machine above is one machine which encodes the Euclidean Algorithm.
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Extended Euclidean Algorithm Machine
Let S = Z8 and let T be the set of transitions described below for all (m,n,z,y, z,a,b,c) € S with a # 0.

(m,n,z,y,z,a,b,¢) = (m,n,a — quot(a, x)x,b — quot(b, )y, c — quot(c, z)z, x,y, z)

We consider the machine M = M (m,n,n,0,1,m,1,0) for given (0,0) # (m,n) € Z>.

The derived variable f(m,n,z,y,z,a,b,c) = z is strictly decreasing across all transitions provided z > 0; more-
over, every length 1 evaluation of M has the reached state f(m,n,r,s,t,7’,s',t') > 0. Moreover, the derived variables
glm,n,z,y,z,a,b,¢) = mb+ncand h(m,n,z,y, z,a,b,c) = a yield the preserved invariant P(s) : g(s) = h(s). More-
over, the Euclidean Algorithm Machine (from the previous section) lives inside of this machine; indeed, the action
of the machine on (z,a) is almost the same (why is it different?). A slight modification of the work in that sec-
tion can be used to conclude that M has a unique terminal state of the form (m,n,ged(m,n),s,t,0,b,c); finally
ged(m,n) = ms + nt by our argument above. Hence M encodes the Extended Euclidean Algorithm on (m,n).

Fast Exponentiation Machine

Consider the Fast Exponentiation Algorithm described below.
Let a € R and b € Ny; set xg = a, yo = 1, and 2y = b.

1. Given (x4, yi, 2i)-
(a) If z; = 0, output y; and stop.
(b) Otherwise, let z;41 = 22, 2,41 = quot(z;,2), and r = rem(z;, 2).
i Ifr=1,let yiy1 = zy;.
ii. If r=0,let y;+1 = y;.
2. Return to step 1 with (241, ¥it1, Zit1)-

We can model this algorithm with a state machine as follows. Let S = R xR x Ny, and let the set T of transitions
be given by all transitions of the following form.
(2,9,2) — (x?y, quot(z, 2)) ?f z # 0 and rem(z,2) =0
(x*, zy,quot(z,2)) if rem(z,2) =1
This models the algorithm above; the transitions are derived precisely from the algorithm itself. Moreover, the
machine M(a,1,b) = (S,T,(a,1,b)) enacts this algorithm on the given a € R and b € Ny. Finally the derived

variable f(x,y,z) = yxz* is constant and g(x,y,z) = z is strictly decreasing on transitions of the machine. Using
these it is easy to show that M(a,1,b) has a unique terminal state, which has the form (z, a®,0).
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